Characterization of Staphylococcus spp. isolates and β-lactam resistance in broiler chicken production

Main Article Content

Ramon Loureiro Pimenta
Dayanne Araújo de Melo
Greiciane França Bronzato
Vinícius Rangel de Salles Souza
Thérèsse Camille Nascimento Holmström
Shana de Mattos de Oliveira Coelho
Irene da Silva Coelho
Miliane Moreira Soares de Souza

Abstract

Methicillin-resistant Staphylococcus spp. are important in both human and veterinary medicine due to its resistance to all β-lactam antimicrobials. The mec genes (mecA, mecA variant and mecC) and blaZ genes are responsible for this phenotype, β-lactam resistance, and are widely spread between staphylococci from animal and human origin. Otherwise, detected that point mutations at the alignment sites could impair the conventional primers for mecA gene amplification in some isolates from animal origin. This study aimed to analyze strains of Staphylococcus spp. isolated from broiler chicken to evaluate its resistance profile to β-lactams. Sixty cloacal and sixty tracheal swab’s were collected at two broiler chicken farms located in the Rio de Janeiro mountain region. The biochemical tests and MALDI-TOF performed bacterial identification. Resistance was evaluated by disk diffusion test and PCR for detecting conventional mecA, variant mecA and blaZ gene. Of 88 staphylococcal isolates, 35,2% (31/88) was identified as S. gallinarum, 17% (15/88) of S. simulans, 10.2% (9/88) of S. sciuri, 4.5% (4/88) of S. lentus and S. cohnii, and 2.2% of S. xylosus and S. aureus (only coagulase-positive Staphylococcus specie identified). The antimicrobials evaluated were penicillin, cefoxitin, oxacillin and vancomycin. Considering the antibiotype profile of Staphylococcus spp. isolates evaluated, six patterns were observed, and the antibiotype 1 were the prevalent presenting 62.5% (55/88). Phenotypic oxacillin-resistance was detected in 26,1% (23/88) of the isolates, and this parameter were used to analyze mecA mediated resistance. The conventional primer did not amplify any the mecA gene while the universal primer allowed the detection of the variant mecA in six strains, being its first report in broilers.

Article Details

How to Cite
Pimenta, R. L. ., de Melo, D. A. ., Bronzato, G. F. ., Souza, V. R. de S., Holmström, T. C. N. ., Coelho, S. de M. de O., Coelho, I. da S. ., & de Souza, M. M. S. . (2021). Characterization of Staphylococcus spp. isolates and β-lactam resistance in broiler chicken production. Brazilian Journal of Veterinary Medicine, 43(1), e00720. https://doi.org/10.29374/2527-2179.bjvm000720
Section
Scientific articles

References

Associação Brasileira de Proteína Animal. Relatório annual 2018. São Paulo: ABPA; 2018. http://abpa-br.org/ wp-content/uploads/2018/10/relatorio-anual-2018.pdf

Brasil, Ministério da Agricultura Pecuária e Abastecimento. (2009, 10 de julho). Technical regulation for the manufacture, quality control, commercialization and use of antimicrobial products for veterinary use (Normative Instruction nº 26 of July 09, 2009). Diário Oficial da República Federativa do Brasil, seção 1.

Calazans-Silva, A. C., Medeiros, P. T. C., Araujo, D. M., Carvalho, B. O., Coelho, I. S., Coelho, S. M. O., & Souza, M. M. S. (2014). Genetic analysis of mecA gene and detection of homologue pbpD in Stahylococcus sciuri group. Brazilian Journal of Microbiology, 45(2), 651-655. http://dx.doi.org/10.1590/S1517-83822014000200038. PMid:25242954.

Clinical and Laboratory Standards Institute. (2018). Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. Wayne: CLSI.

Cohn, L. A., & Middleton, J. R. (2010). A veterinary perspective on methicillin-resistant staphylococci. Veterinary Emergency and Critical Care, 20(1), 31-45. http://dx.doi.org/10.1111/j.1476-4431.2009.00497.x. PMid:20230433.

Corrand, L., Lucas, M. N., Douet, J. Y., Etienne, C. L., Albaric, O., Cadec, A., & Guérin, J. L. A. (2012). A case of unilateral periorbital cellulitis and mandibular osteomyelitis in a Turkey flock. Avian Diseases, 56(2), 427-431. http://dx.doi.org/10.1637/9910-083111-Case.1. PMid:22856207.

Fišarová, L., Pantucek, R., Botka, T., & Doskar, J. (2019). Variability of resistance plasmids in coagulase-negative staphylococci and their importance as a reservoir of antimicrobial resistance. Research in Microbiology, 170(2), 105-111. http://dx.doi.org/10.1016/j.resmic.2018.11.004. PMid:30503569.

Heba, S., Mohamed, K. H. F., Essam, H. M., & Nasef, S. A. (2014). Using integral system staphylococchi kit for biochemical identification and susceptibility testing of coagulase negative Staphylococcus isolated from broiler chickens in Egypt. Global Veterinaria, 13(6), 1022-1028.

Huber, H., Ziegler, D., Pflüger, V., Vogel, G., Zweifel, C., & Stephan, R. (2011). Prevalence and characteristics of methicillin resistant coagulase-negative staphylococci from livestock, chicken carcasses, bulk tank milk, minced meat, and contact persons. BMC Veterinary Research, 7(1), 6. http://dx.doi.org/10.1186/1746-6148-7-6. PMid:21272304.

Huynh, M., Carnaccini, S., Driggers, T., & Shivaprasad, H. L. (2014). Ulcerative dermatitis and valvular endocarditis associated with Staphylococcus aureus in a hyacinth macaw (Anadorhynchus hyacinthinus). Avian Diseases, 58(2), 223-227. http://dx.doi.org/10.1637/10690-101413-Reg.1. PMid:25055625.

Koneman, W. E., Allen, S. D., Janda, W. M., Schreckenberger, P. C., & Winn, W. C. J. R. (2012). Staphylococcaceae. In E. W. Koneman (Ed.), Color atlas and textbook of diagnostic microbiology (6th ed.). Rio de Janeiro: Editora Médica e Científica.

Kuroda, M., Ohta, T., Uchiyama, I., Babba, T., Yuzawa, H. I., Kobayashi, L., Cui, A., Oguchi, K., Aoki, Y., & Nagai, J. (2001). Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. The New England Journal of Medicine, 319(3), 157-161.

Melo, D. A., Coelho, I. S., Motta, C. C., Rojas, A. C. C. M., Dubenczuk, F. C., Coelho, S. M. O., & Souza, M. M. S. (2014). Impairments of mecA gene detection in bovine Staphylococcus spp. Brazilian Journal of Microbiology, 45(3), 1075-1082. http://dx.doi.org/10.1590/S1517-83822014000300041. PMid:25477945.

Melo, D. A., Motta, C. C., Rojas, A. C. C. M., Soares, B. S., Coelho, I. S., Coelho, S. M. O., & Souza, M. M. S. (2018). Characterization of coagulase-negative staphylococci and pheno-genotypic β lactam resistance evaluation in samples from bovine intramammary infection. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 70(2), 368-374. http://dx.doi.org/10.1590/1678-4162-9209.

Melo, D. A., Soares, B. S., Motta, C. C., Dubenczuck, F. C., Barbieri, N. L., Logue, C. M., Coelho, S. M. O., Coelho, I. S., & Souza, M. M. S. (2020). Accuracy of PCR universal primer for methicillin-resistant Staphylococcus and comparison of different phenotypic screening assays. Brazilian Journal of Microbiology, 51(1), 403-407. http:// dx.doi.org/10.1007/s42770-019-00171-6. PMid:31664699.

Mendonça, E. C. L., Marques, V. F., Melo, D. A., Alencar, T. A., Coelho, I. S., Coelho, S. M. O., & Souza, M. M. S. (2012). Phenogenotypic characterization of antimicrobial resistance in Staphylococcus spp. isolated from bovine mastitis. Pesquisa Veterinária Brasileira, 32(1), 859-864. http://dx.doi.org/10.1590/S0100-736X2012000900008.

Murakami, K., Minamide, W., Wada, K., Nakamura, E., Teraoka, H., & Watanabe, S. (1991). Identification of methicillin resistant strains of staphylococci by polymerase chain reaction. Journal of Clinical Microbiology, 29(10), 2240-2244. http://dx.doi.org/10.1128/JCM.29.10.2240-2244.1991. PMid:1939577.

Nemeghaire, S., Vanderhaeghen, W., Argudin, M. A., Haesebrouck, F., & Butaye, P. (2014). Characterization of methicillin-resistant Staphylococcus sciuri isolates from industrially raised pigs, cattle and broiler chickens. The Journal of Antimicrobial Chemotherapy, 69(11), 2928-2934. http://dx.doi.org/10.1093/jac/dku268. PMid:25063778.

O’Neill, J. (2015). Securing new drugs for future generations: The pipeline of antibiotics. Review on antimicrobial resistance. London: Wellcome Trust and UK Government.

Rosato, A. E., Kreiswirth, B. N., Craig, W. A., Eisner, W., Climo, M. W., & Archer, G. L. (2003). mecA-BlaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrobial Agents and Chemotherapy, 47(4), 1460-1463. http:// dx.doi.org/10.1128/AAC.47.4.1460-1463.2003. PMid:12654694.

Rueanghiran, C., Viriyarampa, S., Thongyan, S., & Tulayakul, P. (2017). Species diversity and antimicrobial susceptibility properties of Staphylococcus isolated from broiler feces in selected farms, Thailand. Journal of Public Health, 47(1), 44-55.

Schoenfelder, S. M., Dong, Y., Feßler, A. T., Schwarz, S., Schoen, C., Köck, R., & Ziebuhr, W. (2017). Antibiotic resistance profiles of coagulase-negative staphylococci in livestock environments. Veterinary Microbiology, 200(1), 79-87. http://dx.doi.org/10.1016/j.vetmic.2016.04.019. PMid:27185355.

Soares, L. C., Pereira, I. A., Coelho, S. M. O., Cunha, C. M. M., Oliveira, D. F. B., Miranda, A. N., & Souza, M. M. S. (2008). Phenotypic characterization of antimicrobial resistance and mecA gene detection in Staphylococcus spp. coagulase-negative strains isolated from animal and human samples. Ciência Rural, 38(5), 1346-1350. http://dx.doi.org/10.1590/S0103-84782008000500023.

Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5649-5654. http://dx.doi.org/10.1073/pnas.1503141112. PMid:25792457.