3D models of nonunion fractures in long bones as education tools
PDF

How to Cite

Elifelina Monteiro Rodrigues, K., dos Anjos Lucas, K., Lopes Cordeiro, A. L. ., Martins Silva, R. P. ., de Araújo Santos, F. G. ., & Karaccas de Carvalho, Y. (2021). 3D models of nonunion fractures in long bones as education tools. Brazilian Journal of Veterinary Medicine, 43(1), e114821. https://doi.org/10.29374/2527-2179.bjvm114821

Abstract

The appearance of fracture complications can present itself as a difficult scenario in a veterinarian’s practice, and it can be difficult to diagnose and have a poor prognosis. The recognition of the different types of nonunion fractures can enable quick guidance on the best way to act, thus reducing the cost of treatment and the patient’s suffering. The objective of this study was to create 3D models of nonunion fractures in long bones (3D NUFs). The study was carried out in three stages: 1) creating biscuit models from representations of nonunion fractures; 2) scanning the biscuit models of nonunion fractures and 3D modeling; and 3) printing and finishing the 3D models of nonunion fractures (hereafter, 3D NUFs). The creation of biscuit prototypes and the respective digitalization were decisive in producing 3D NUFs, which reproduced the main characteristics of each type of nonunion fracture classification described in the literature. It took 31.1 hours to create and print all 3D NUFs using 95.66 grams of filament (ABS) for a total cost of $3.73. The creation of 3D NUFs from the biscuit dough presented a new way of obtaining didactic models for the teaching of veterinary medicine. The 3D NUFs represent the different forms of low-cost manifestations that characterize this disease, which can be used as a possible teaching-learning tool for veterinary education.

https://doi.org/10.29374/2527-2179.bjvm114821
PDF

References

Souza, R. T. B & Alves, M. H (2016) Modelos didáticos com massa de biscuit: Inovando no ensino de ciências e biologia. Espacios, 37(29), 8.

Chung, M., Radacsi, N., Robert, C., Mccarthy, E. D., Callanan, A., Conlisk, N., Hoskins, P. R. & Koutsos, V. (2018) On the optimization of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry. 3D Printing in Medicine, 4(1), p.1–10. http://dx.doi.org/10.1186/s41205-017-0023-2 PMID: 29782613

Denny, H. R. & Butterworth, S. J. (2006) Complicações das fraturas. In: Butterworth, S. & Denny, H. (Ed) Cirurgia ortopédica em cães e gatos. 4 ed. (p.103-118) São Paulo: Roca.

Dismukes, D. I, Fox, D. B., Tomlinson, L. J. & Essman, S. C. (2008) Use of radiographic measures and three-dimensional computed tomographic imaging in surgical correction of an antebrachial deformity in a dog. Journal of the American Veterinary Medical Association, 232(1), 1-6. http://dx.doi.org/10.2460/javma.232.1.68

Frölke, J. P. & Patka, P. (2007) Definition and classification of fracture non-unions. International journal of the Care Injured, 38, 19-22. http://dx.doi.org/0.1016/s0020-1383(07)80005-2

Hespel, A. M. & Hudson J. W. R. (2014) Invited review-applications for 3D printers in veterinary medicine. Veterinary Radiology Ultrasound, 55, 347-58. DOI: 10.1111/vru.12176 PMID: 24889058

Jain, R., Shukla, B. P., Nema, S., Supriya, S., Daljeet, C. & Karmore, S. K. (2018) Incidence of fracture in dog: a retrospective study. Veterinary Practitioner, 19, 63-65. Disponible at http://www.vetpract.in/Archives/June--2018/incidence-of-fracture-in-dog-a-retrospective-study/

Keosengthong, A., Kampa, N., Jitpean, S., Seesupa, S., Kunkitti, P. & Hoisang, S. (2019). Incidence and classification of bone fracture in dogs and cats: a retrospective study at veterinary teaching hospital, Khon Kaen university, Thailand (2013-2016). Veterinary Integrative Sciences, 17(2), 127-139. Disponible at https://he02.tci-thaijo.org/index.php/vis/article/view/135358

Kushwaha, R. B., Gupta, A. K., Bhadwal, M. S., Kumar, S. & Tripathi, A. K. (2011) Incidence of fractures and their management in animals: a clinical study of 77 cases. Indian Journal of Veterinary Surgery, 32, 54-56.

Li, Z., Li, Z., Xu, R., Li, M., Li, J., Liu, Y. & Chen, Z. (2015). Three-dimensional printing models improve understanding of spinal fracture—A randomized controlled study in China. Scientific reports, 5, 11570.http://dx.doi.org/10.1038/srep11570.

Li, F., Liu, C., Song, X., Huan, Y., Gao, S., Jiang, Z. (2018) Production of accurate skeletal models of domestic animals using three-dimensional scanning and printing technology. Anatomical Science Education,11, 73-80. http://dx.doi.org/10.1002/ase.1725

Lima, A. S., Machado, M., Pereira, R. C. R., Carvalho, Y. K.; (2019) Printing 3D models of canine jaw fractures for teaching undergraduate veterinary medicine. Acta Cirúrgica Brasileira, 34(9).

DOI: 10.1590/s0102-865020190090000006 PMID: 31826098

Matos, C. H. C., Oliveira, C. R. F., Santos, M. P. F. & Ferraz, C. S. (2009) Utilização de Modelos Didáticos no Ensino de Entomologia. Revista de Biologia e Ciências da Terra, 9(1), 19-23.

Massie, A. M., Kapatkin, A. S., Fuller, M. C., Verstraete, F. J. M., Arzi, B. (2017). Outcome of nonunion fractures in dogs treated with fixation compression resistant matrix, and recombinant human bone morphogenetic protein-2. Veterinary and Comparative Orthopaedics and Traumatology, 30(2), 153-159. http://dx.doi.org/10.3415/VCOT-16-05-0082

Mills, L. A., Aitken, S. A. & Simpson, H. R.W. (2017) The risk of non-union per fracture: current myths and revised figures from a population of over 4 million. Acta Orthopaedica, 88(4), 434-439. DOI: 10.1080/17453674.2017.1321351 PMID: 28508682

Neves, E. C., Pelizzari, C., Oliveira, R. S., Kassab, S., Lucas, K. A. & Carvalho, Y. K. (2020) 3D Anatomical model for teaching canine lumbosacral epidural anesthesia. Acta Cirúrgica Brasileira, 35(4), 1-8. DOI: 10.1590/s0102-865020200060000008 PMID: 32667587

Nibblett, B. M. D., Pereira, M. M., Sithole, F., Orchard, P. A. D. & Bauman, E. B. (2017). Design and Validation of a Three-Dimensional Printed Flexible Canine Otoscopy Teaching Model. Simulation in Healthcare : Journal of the Society for Simulation in Healthcare, 12(2), 91–95. DOI: 10.1097/SIH.0000000000000227 PMID: 28383365

Nunez, R. Y. G., Albuquerque, L. K., Pereira, R. C. R., Silva, R. P. M., Peruquetti, P. F. & Carvalho, Y. K. (2020). 3D printing of canine hip dysplasia: anatomic models and radiographs. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 72(3), 769-777.https:// dx.doi.org/10.1590/1678-4162-10899

Polyzois, V. D., Papakostas, I., Stamatis, E. D., Zgonis, T. & Beris, A. E. (2006). Current concepts in delayed bone union and non-union. Clinics in podiatric medicine and surgery, 23(2), 445–448. DOI: 10.1016/j.cpm.2006.01.005 PMID: 16903161

Preece, D., Williams, S. B., Lam, R. & Weller, R. (2013). “Let’s get physical”: Advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anatomical Sciences Education, 6(4), 216–224. DOI: 10.1002/ase.1345 PMID: 23349117

Pugh, K. J. & Rozbruch, S. R. (2018) Nonunion and Malunions. In: Javad Parvizi M.D. (Ed) Orthopaedic knowledge Update. 12 ed. (p. 115-130) Rosemont: American Academy of Orthopaedic Surgeons.

Reis, D. A. L., Gouveia, B. L. R., Junior, J. C. R. & Neto, A. C. A. (2019). Comparative assessment of anatomical details of thoracic limb bones of a horse to that of models produced via scanning and 3D printing. 3D Printing in Medicine, 5. 1-10 DOI: 10.1186/s41205-019-0050-2 PMID: 31375944

Smith, C. F., Tollemache, N., Covill, D. & Johnston, M. (2018). Take away body parts! An investigation into the use of 3D-printed anatomical models in undergraduate anatomy education. Anatomical Sciences Education, 11(1), 44–53. https://dx.doi.org/10.1002/ase.1718

Thawani, J. P., Pisapia, J. M., Singh, N., Petrov, D., Schuster, J. M., Hurst, R. W., Zager, E. L. & Pukenas, B. A. (2016) Three-Dimensional Printed Modeling of an Arteriovenous Malformation Including Blood Flow. World Neurosurgery, 90, p. 675–683, e.2. https://dx.doi.org/10.1016/j.wneu.2016.03.095

Thomas, D. B., Hiscox, J. D., Dixon B. J., Potgieter, J. (2016). 3D scanning and printing skeletal tissues for anatomy education. Journal of Anatomy, 229(3), 473-481. DOI: 10.1111/joa.12484 PMID: 27146106

Vranicar, M., Gregory, W., Douglas, W. I., Di Sessa, P. & Di Sessa, T. G. (2008). The use of stereolithographic hand held models for evaluation of congenital anomalies of the great arteries. Studies in health technology and informatics, 132, 538–543. PMID: 18391364

Weber, B.G. & Cech, O. (1976) Pseudarthrosis, Pathology, Biomechanics, Therapy, Results. Berne: Hans Huber.

Zierer, M. S. (2017) The construction and application of didactic models in Biochemistry teaching. Journal of Biochemistry Education. 15, 1-10.

Zimmermann, G.; Muller, U.; Wentzensen, A. (2007) The value of laboratory and imaging studies in the evaluation of long-bone non-unions. Injury, 38(2), 33-37.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Katriny Elifelina Monteiro Rodrigues, Kleber dos Anjos Lucas, Andrey Luis Lopes Cordeiro, Yuri Karaccas de Carvalho, Patricia Peruquetti