Bioprinting of 3D anatomical models of flat and long thoracic limb bones of domestic cats (Felis catus Linnaeus, 1758)
PDF

How to Cite

Elias’, N. da S. R., Pereira, H. C. S., Lisboa Neto, A. F. da S., da Silveira, E. E., dos Santos, A. C., & de Assis Neto, A. C. (2021). Bioprinting of 3D anatomical models of flat and long thoracic limb bones of domestic cats (Felis catus Linnaeus, 1758) . Brazilian Journal of Veterinary Medicine, 43(1), e106020. https://doi.org/10.29374/2527-2179.bjvm106020

Abstract

Any technique that assists the study of anatomy is important for the development of learning because knowledge creates a fundamental connection to the clinical and surgical routine. Three-dimensional (3D) model printing has gained visibility by achieving similarities between the real model and the printed one. This work aimed to produce 3D-printed anatomical pieces which are true to the real parts of the flat (scapula) and long (humerus, radius and ulna) bones of the thoracic limb in cats. Domestic cat bones from the FMVZ-USP Veterinary Macroscopic Anatomy Laboratory collection were used to obtain the scanned images and prints of the 3D models. The obtained 3D models were similar to the real bones and included the anatomical particularities of the species. Anatomical details of the scapula, humerus, radius, and ulna were reliably obtained. This study produced digital and printed 3D anatomical models of the flat and long bones of the thoracic limb, which can be used interactively and dynamically to teach comparative and applied anatomy.

https://doi.org/10.29374/2527-2179.bjvm106020
PDF

References

Alcântara, B.M., Silveira, E.E., Pereira, H.C.S., Lisboa Neto, A.F.S., Santos, A.C., & Assis Neto, A.C. (2019). Digitalização e impressão tridimensional como uma ferramenta para estudo anatômico e ortopédico dos ossos da pelve e longos do membro pélvico de cães. Acta Scientiae Veterinariae, 47, 1653. https://dx.doi.org/10.22456/1679-9216.91076.

Burzyńska, K., Morasiewicz, P., & Filipiak, J. (2016). The use of 3D printing technology in the Ilizarov Method Treatment: Pilot study. Advances in Clinical and Experimental Medicine, 25(6), 1157-1163. http://dx.doi.org/10.17219/ acem/64024. PMid:28028968.

Cone, J. A., Martin, T. M., Marcellin-Little, D. J., Harrysson, O. L. A., & Griffith, E. H. (2017). Accuracy and repeatability of long-bone replicas of small animals fabricated by use of low-end and high-end commercial three-dimensional printers. American Journal of Veterinary Research, 78(8), 900-905. http://dx.doi.org/10.2460/ ajvr.78.8.900. PMid:28738005.

Cui, H., Nowicki, M., Fisher, J. P., & Zhang, L. G. (2017). 3D bioprinting for organ regeneration. Advanced Healthcare Materials, 6(1), 1601118. http://dx.doi.org/10.1002/adhm.201601118. PMid:27995751.

Dorbandt, D. M., Joslyn, S. K., & Hamor, R. E. (2017). Three-dimensional printing of orbital and peri-orbital masses inthree dogs and its potential applications in veterinary ophthalmology. Veterinary Ophthalmology, 20(1), 58-64. http://dx.doi.org/10.1111/vop.12352. PMid:26801834.

Hackmann, C. H., Dos Reis, D. A. L., & Assis Neto, A. C. (2019). Digital revolution in veterinary anatomy: Confection of anatomical models of canine stomach by scanning and three-dimensional printing (3D). International Journal of Morphology, 37(2), 486-490. http://dx.doi.org/10.4067/S0717-95022019000200486.

Hadeed, K., Acar, P., Dulac, Y., Cuttone, F., Alacoque, X., & Karsenty, C. (2018). Cardiac 3D printing for better understanding of congenital heart disease. Archives of Cardiovascular Diseases, 111(1), 1-4. http://dx.doi. org/10.1016/j.acvd.2017.10.001. PMid:29158165.

International Committee on Veterinary Gross Anatomical Nomenclature. (2017). Nomina anatômica veterinária. (5th ed.). Editorial Committee.

Kim, S. E., Shim, K. M., Jang, K., Shim, J. H., & Kang, S. S. (2018). Three-dimensional printing-based reconstruction of a maxillary bone defect in a dog following tumor removal. In Vivo, 32(1), 63-70. http://dx.doi.org/10.21873/ invivo.11205. PMid:29275300.

Li, F., Liu, C., Song, X., Huan, Y., Gao, S., & Jiang, Z. (2018). Production of accurate skeletal models of domestic animals using three-dimensional scanning and printing technology. Anatomical Sciences Education, 11(1), 73-80. http://dx.doi.org/10.1002/ase.1725. PMid:28914982.

Matozinhos, I. P., Madureira, A. A. C., Silva, G. F., Madeira, G. C. C., Oliveira, I. F. A., & Corrêa, C. R. (2017). Impressão 3D: Inovações no campo da Medicina. Revista Interdisciplinar Ciências Médicas, 1(1), 143-162.

McMenamin, P. G., Quayle, M. R., McHenry, C. R., & Adams, J. W. (2014). The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anatomical Sciences Education, 7(6), 479-486. http://dx.doi.org/10.1002/ase.1475. PMid:24976019.

Mukherjee, P., Cheng, K., Flanagan, S., & Greenberg, S. (2017). Utility of 3D printed temporal bones in pre-surgical planning for complex BoneBridge cases. European Archives of Oto-Rhino-Laryngology, 274(8), 3021-3028. http://dx.doi.org/10.1007/s00405-017-4618-4. PMid:28540513.

Oxley, B. (2018). A 3‐dimensional‐printed patient‐specific guide system for minimally invasive plate osteosynthesis of a comminuted mid‐diaphyseal humeral fracture in a cat. Veterinary Surgery, 47(3), 445-453. http://dx.doi. org/10.1111/vsu.12776. PMid:29446490.

Pereira, G. G., Diéguez, J., Demirbas, Y. S., & Menache, A. (2017). Alternatives to animal use in veterinary education: A growing debate. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 64(3), 235-239. http://dx.doi.org/10.1501/ Vetfak_0000002804.

Reis, D. A. L., Gouveia, B. L. R., Alcântara, B. M., Saragiotto, B. P., Baumel, É. E. D., Ferreira, J. S., Rosa Júnior, J. C., Oliveira, F. D., Santos, P. R. S., & Assis Neto, A. C. (2017). Biomodelos ósseos produzidos por intermédio da impressão 3D: Uma alternativa metodológica no ensino da anatomia veterinária. Revista de Graduação USP., 2(3), 47-53. http://dx.doi.org/10.11606/issn.2525-376X.v2i3p47-53.

Reis, D. A. L., Gouveia, B. L. R., Rosa Junior, J. C., & Assis Neto, A. C. (2019). Comparative assessment of anatomical details of thoracic limb bones of a horse to that of models produced via scanning and 3D printing. 3D Printing in medicine, 5, 13.

Rodrigues, H. (2005). Técnicas anatômicas. (3a ed.). Arte Visual.

Schoenfeld-Tacher, R. M., Horn, T. J., Scheviak, T. A., Royal, K. D., & Hudson, L. C. (2017). Evaluation of 3D additively manufactured canine brain models for teaching veterinary neuroanatomy. Journal of Veterinary Medical Education, 44(4), 612-619. http://dx.doi.org/10.3138/jvme.0416-080R. PMid:28534721.

Silva, F., & Gamarra-Rosado, V.O. (2014). Biomodelagem virtual para diagnóstico e planejamento cirúrgico usando softwares livres. Informática na Educação: Teoria & Prática, 17(1), 125-143. https://doi.org/10.22456/1982-1654.38000.

Suñol, A., Aige, V., Morales, C., López-Beltran, M., Feliu-Pascual, A. L., & Puig, J. (2019). Use of three-dimensional printing models for veterinary medical education: Impact on learning how to identify canine vertebral fractures. Journal of Veterinary Medical Education, 46(4), 523-532. http://dx.doi.org/10.3138/jvme.0817-109r. PMid:30418815.

Thomas, D. B., Hiscox, J. D., Dixon, B. J., & Potgieter, J. (2016). 3D scanning and printing skeletal tissues for anatomy education. Journal of Anatomy, 229(3), 473-481.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Nathalia da Silva Ramos Elias, helton carlos sabino pereira, Antônio Francisco da Silva Lisboa Neto, Erick Eduardo da Silveira, Amilton César dos Santos, Antônio Chaves de Assis Neto