Chemical immobilization of free-living capybaras (Hydrochoerus hydrochaeris) using ketamine-dexmedetomidine combination and a remote drug delivery system
PDF

Keywords

RDDS, wildlife chemical restraint, atipamezole, capybara.

How to Cite

ROSENFIELD, D., Ferraro, M., Igayara, C., Gaigo Cortopassi, S. R., & Schilbach Pizzutto, C. (2021). Chemical immobilization of free-living capybaras (Hydrochoerus hydrochaeris) using ketamine-dexmedetomidine combination and a remote drug delivery system. Brazilian Journal of Veterinary Medicine, 42(1), e107220. https://doi.org/10.29374/2527-2179.bjvm107220

Abstract

Capturing wild capybaras for scientific projects, population control or medical interventions is a growing necessity. With this study, we intended to evaluate a Ketamine/Dexmedetomidine as a reversible chemical restraint in free-ranging synanthropic capybaras, seeking enhanced anesthetic and recovery characteristics while testing a specialized remote drug delivery system (RDDS). For this purpose, 18 adult capybaras (male n = 8; females n = 10) (67.3 ± 9.45 kg), prior to chemical restraint, were physically confined, subsequently darted intramuscularly with 9 mg kg-1 ketamine and 0,005 mg kg-1 dexmedetomidine. Post-intervention, 0,005 mg kg-1 atipamezole, administered IM, was used as a reversal agent (RA), (n = 5). Anesthetic effects were recorded as latency period (LP I/first observed effects) (LP II /lateral recumbency plus time to handle the animal). Recovery time was divided into (R1/no RA, fully recovered/ready for release), (R2a/R2b, with RA, time to ambulant position plus time to full recovery/release, respectively). Vital signs were recorded at a 15-minute interval. GraphPad Prism 8.1.1 was used to perform unpaired t-test, with a p-value ˂ 0,05 considered significant. Results: Mean LP I: 3 ± 1 min.; LP II: 10 ± 2 min. Procedure duration: 49 ± 5 min. Recovery time without RA, (R1): 55 ± 15 min., compared to 18 min., with RA (R2a) to ambulant position (with severe discoordination), requiring additional time until full recovery (ready for release): ± 45 min (R2b). Total time, to release (R2a/b): mean ± SD = 67 ± 13.85 min. Concluding for clinical relevance that the association of Ketamine and Dexmedetomidine performed satisfactorily, providing effective sedation and analgesia, and relative short latency periods. Used RA did not shorten total recovery time significantly (P-value = 0,7328). Adverse effects such as the risk of acute cecal tympany, due to the lack of pre-anesthetic fasting, concurrent to collateral effects of injectable and volatile anesthetics on the motility of the digestive tract, and induced bradycardia/hyperthermia warrant extra caution. The employed RDDS provided reliable drug delivery under field conditions.

https://doi.org/10.29374/2527-2179.bjvm107220
PDF

References

Abutarbush, S. M., Carmalt, J. L., & Shoemaker, R . W. (2005). Causes of gastrointestinal colic in horses in western Canada: 604 cases (1992 to 2002). The Canadian Veterinary Journal. La Revue Veterinaire Canadienne, 46(9), 800-805. PMid:16231649.

Araújo, G. R., Paula, T. A. R., Deco-Souza, T., Morato, R. G., Bergo, L. C. F., Silva, L. C., Costa, D. S., & Braud, C.(2018). Comparison of semen samples collected from wild and captive jaguars (Panthera onca) by urethral catheterization after pharmacological induction. Animal Reproduction Science, 195, 1-7. http://dx.doi.org/10.1016/j.anireprosci.2017.12.019. PMid:29935916.

Arnemo, J. M., Storaas, T., Khadka, C. B., & Wegge, P. (2005). Use of medetomidine-ketamine and atipamezole for reversible immobilization of free-ranging hog deer (Axis porcinus) captured in drive nets. Journal of Wildlife Diseases, 41(2), 467-470. http://dx.doi.org/10.7589/0090-3558-41.2.467. PMid:16107687.Bouts, T., Harrison, N., Berry, K., Taylor, P., Routh, A., & Gasthuys, F. (2010). Comparison of three anaesthetic protocols in Bennett’s wallabies (Macropus rufogriseus). Veterinary Anaesthesia and Analgesia, 37(3), 207-214. http://dx.doi.org/10.1111/j.1467-2995.2009.00523.x. PMid:20230552.

Cizauskas, C. A. (2008). Zoo animal & wildlife immobilization and anesthesia. Journal of Wildlife Diseases, 44(2), 528-530. http://dx.doi.org/10.7589/0090-3558-44.2.528.Colorado State University. (2019). Ruminal Tympany. Fort Collins. Retrieved in 1 December 2019, from http://www.vivo.colostate.edu/hbooks/pathphys/digestion/herbivores/tympany.html

Cruz, M. L., Luna, S. P. L., Moura, C. A., Castro, G. B., Neto, T., José, F., & Nishida, S. M. (1998). Anaesthetic techniques in capybaras (Hydrochoerus hydrochaeris, Linné). Ciência Rural, 28, 411-415. http://dx.doi.org/10.1590/S0103-84781998000300010

Ferraro, M. A. R., Molina, C . V., Gris, V. N ., Kierulff, M. C. M., Bueno, M. G., & Cortopassi, S. R. G. (2019). Early reversal of ketamine/dexmedetomidine chemical immobilization by atipamezole in golden-headed lion tamarins (Leontopithecus chrysomelas). Journal of Medical Primatology, 0(6), 351-356. http://dx.doi.org/10.1111/jmp.12429. PMid:31194266.

Góngora, A., Murillo, R., Rodríguez, J., Rincón-Aranguri, M., & Morales, R. (2010). Obtención y Evaluación de las Características Seminales del Chigüiro (Hydrochoerus hydrochaeris). Memorias Conferencia Internacional de Medicina y Aprovechamiento de Fauna Silvestre Exótica, 6, 15-23.

Granholm, M., McKusick, B. C., Westerholm, F. C ., & Aspegren, J. C. (2007). Evaluation of the clinical efficacy and safety of intramuscular and intravenous doses of dexmedetomidine and medetomidine in dogs and their reversal with atipamezole. The Veterinary Record, 160(26), 891-897. http://dx.doi.org/10.1136/vr.160.26.891. PMid:17602104.

Grayson, K., Tobin, A. E., Lim, T. K ., Reid, D. E., & Ghani, M. (2017). Dexmedetomidine-associated hyperthermia: a retrospective cohort study of intensive care unit admissions between 2009 and 2016. Anaesthesia and Intensive Care, 45(6), 727-736. http://dx.doi.org/10.1177/0310057X1704500613. PMid:29137584.

Herrera, E. A., & Macdonald, D. W. (1989). Resource utilization and territoriality in group-living Capybaras (Hydrochoerus hydrochaeris). Journal of Animal Ecology, 58(2), 667-679. http://dx.doi.org/10.2307/4855.

King, J. D., Congdon, E., & Tosta, C. (2010). Evaluation of three immobilization combinations in the capybara (Hydrochoerus hydrochaeris). Zoo Biology, 29(1), 59-67. http://dx.doi.org/10.1002/zoo.20269. PMid:19645047.Kümper, H. (1994). New therapy for acute abomasal tympany in calves. Tierärztliche Praxis, 22(1), 25-27.PMid:8165656.

Lueders, I., Luther, I., Scheepers, G., & van der Horst, G. (2012). Improved semen collection method for wild felids: urethral catheterization yields high sperm quality in African lions (Panthera leo). Theriogenology, 78(3), 696-701. http://dx.doi.org/10.1016/j.theriogenology.2012.02.026. PMid:22538007.

Mones, A., & Ojasti, J. (1986). Hydrochoerus hydrochaeris. Mammalian Species, 1(264), 1-7. http://dx.doi.org/10.2307/3503784.

Monsalve-Buritica, S., Rojano-Bolano, C., & Carrascal-Velasquez, J. C. (2013). Comparison of two anesthetic protocols in wild capybaras (Hydrochoerus hydrochaeris isthmius) in the department of Córdoba, Colombia. Veterinária e Zootecnia, 7(1), 90-99.

Moreira, J. R. (2013). Capybara: biology, use and conservation of an exceptional neotropical species (1st ed.). New York: Springer. http://dx.doi.org/10.1007/978-1-4614-4000-0.

Moreira, J. R., Ferraz, K. M. P. M. B., Herrera, E. A., & MacDonald, D. W. (2012). Capybara: Biology, use and conservation of an exceptional neotropical species. New York, NY: Springer Science & Business Media.Nishiyama, S. M. (2006). Associação cetamina-xilazina, tiletamina-zolazepam e tiletaminazolazepam-levomepromazina na anestesia de Capivara (Hydrochoerus hydrochaeris). Revista Ceres, 53(307), 406-412.

Nishiyama, S. M. (2003). Associação cetamina-xilazina, tiletamina-zolazepam, e tiletamina-zolazepam-levomepromazina na anestesia de capivara (Hydrochoerus hydrochaeris). Revista Ceres, 53(307), 406-412.Pascoe, P. J. (2015). The cardiopulmonary effects of dexmedetomidine infusions in dogs during isoflurane anesthesia. Veterinary Anaesthesia and Analgesia, 42(4), 360-368. http://dx.doi.org/10.1111/vaa.12220. PMid:25082327.

Pisu, M. C., Ponzio, P., Rovella, C., Baravalle, M., & Veronesi, M. C. (2017). Usefulness of an injectable anaesthetic protocol for semen collection through urethral catheterisation in domestic cats. Journal of Feline Medicine and Surgery, 19(10), 1087-1090. http://dx.doi.org/10.1177/1098612X16679589. PMid:27856784.

Re, M., Blanco-Murcia, F. J ., San Miguel, J. M., & Gómez de Segura, I. A. (2013). Reversible chemical restraint of free-range cattle with a concentrated combination of tiletamine–zolazepam, ketamine, and detomidine. Canadian Journal of Veterinary Research, 77(4), 288-292. PMid:24124271.

Roberto, G . V., Tonon, L . V., Oleskovicks, N., & Moraes, A. N. (2018, September 12-13). Avaliação da Anestesia intravenosa em procedimentos de esterilização no manjeo reprodutivo de Capivaras (Hydrochaeris hydrochaeris) de vida livre no município de lages. In 28º Seminário de Iniciação Científica (pp. 1-2). Santa Catarina: Universidade do Estado de Santa Catarina.

Rosenfield, D., Ferraro, M. A., Yanai, P. R ., Igayara, C., & Schilbach Pizzutto, C. (2019a). Acute Cecal tympany during chemical restraint in free-ranging Capybara (Hydrochoerus Hydrochaeris) - Iatrogenic Cause and Treatment. Brazilian Journal of Veterinary Pathology, 12(3), 117-122. http://dx.doi.org/10.24070/bjvp.1983-0246.v12i3p117-122.

Rosenfield, D. A ., Nichi, M., Losano, J. D. A., Kawai, G., Leite, R . F., Acosta, A. J., Baquero, O. S., & Pizzutto, C. S. (2019b). Field-testing a single-dose immunocontraceptive in free-ranging male capybara (Hydrochoerus hydrochaeris): Evaluation of effects on reproductive physiology, secondary sexual characteristics, and agonistic behavior. Animal Reproduction Science, 209, 106148. http://dx.doi.org/10.1016/j.anireprosci.2019.106148. PMid:31514916.

Rosenfield, D. A ., & Schilbach Pizzutto, C. (2019). Positive-reinforcement strategies to reduce Capture-Stress in Capybaras - Manuscript submitted for publication. Acta Scientiarum, 41:1-12.Salas, V., Pannier, E., Galíndez-Silva, C., Gols-Ripoll, A., & Herrera, E. A. (2004). Methods for Capturing and Marking Wild Capybaras in Venezuela. Wildlife Society Bulletin, 32, 202-208.

Spinosa, H. S., Górnik, S. L., & Bernardi, M. M. (2011). Farmacologia aplicada à medicina veterinária (6. ed.). Rio de Janeiro: Guanabara Koogan.Tanila, H., Kauppila, T., & Taira, T. (1993). Inhibition of intestinal motility and reversal of postlaparotomy ileus by selective α2-adrenergic drugs in the rat. Gastroenterology, 104(3), 819-824. http://dx.doi.org/10.1016/0016-5085(93)91018-D. PMid:8095034.

Torjman, M. C., Joseph, J. I., Munsick, C., Morishita, M., & Grunwald, Z. (2005). Effects of Isoflurane on gastrointestinal motility after brief exposure in rats. International Journal of Pharmaceutics, 294(1-2), 65-71. http://dx.doi.org/10.1016/j.ijpharm.2004.12.028. PMid:15814231.Tsuruga, H., Suzuki, M., Takahashi, H., Jinma, K., & Kaji, K. (1999). Immobilization of Sika Deer with Medetomidine and Ketamine, and Antagonism by Atipamezole. Journal of Wildlife Diseases, 35(4), 774-778. http://dx.doi.org/10.7589/0090-3558-35.4.774. PMid:10574539.

Wellington, D., Mikaelian, I., & Singer, L. (2013). Comparison of Ketamine-Xylazine and Ketamine-Dexmedetomidine anesthesia and intraperitoneal tolerance in rats. Journal of the American Association for Laboratory Animal Science, 52(4), 481-487. PMid:23849447.

West, G. D., Heard, D. J., & Caulkett, N. (2007). Zoo animal and wildlife immobilization and anesthesia (1st ed.). Ames, Iowa: Blackwell Publishing. http://dx.doi.org/10.1002/9780470376478.

Zullian, C., Menozzi, A., Pozzoli, C., Poli, E., & Bertini, S. (2011). Effects of α2-adrenergic drugs on small intestinal motility in the horse: An in vitro study. Veterinary Journal (London, England), 187(3), 342-346. http://dx.doi.org/10.1016/j.tvjl.2009.12.015. PMid:20093057.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 DEREK ROSENFIELD, Mario Ferraro, Claudia Igayara, Silvia Renata Gaigo Cortopassi, Cristiane Schilbach Pizzutto