Methicillin-resistant Staphylococcus pseudintermedius: an underestimated risk at pet clinic
PDF

Keywords

Staphylococcus pseudintermedius
Methicillin resistance
mecA gene
companion animals

How to Cite

Holmstrom, T., Adib David , L. ., da Motta, C. C., Hebert dos Santos, T., da Silva Coelho, I., de Mattos de Oliveira Coelho, S. ., Araújo de Melo, D. ., & Moreira Soares de Souza, M. . (2021). Methicillin-resistant Staphylococcus pseudintermedius: an underestimated risk at pet clinic. Brazilian Journal of Veterinary Medicine, 42(1), e107420. https://doi.org/10.29374/2527-2179.bjvm107420

Abstract

The prevalence of methicillin-resistant Staphylococcus pseudintermedius (MRSP) as a cause of infectious disease in companion animals remains unknown. The emergence of MRSP is a challenge in veterinary medicine as multidrug-resistant strains began to emerge, resulting in treatment failures. This study provides an overview of the characterization of S. pseudintermedius strains from clinical pet samples and the prevalence of MRSP strains. A total of 123 S. pseudintermedius strains were characterized by phenotypic testing and the MALDI-TOF technique and evaluated for susceptibility to methicillin and the presence of the mecA gene. Of these, 49 (39.8%) were identified as MRSP. The results confirm the importance of monitoring resistant pathogens and the need for further studies to determine the prevalence of MRSP in companion animals. The prevalence of methicillin-resistant Staphylococcus pseudintermedius (MRSP) as a cause of infectious disease in companion animals remains unknown. The emergence of MRSP is a challenge in veterinary medicine as multidrug-resistant strains began to emerge, resulting in treatment failures. This study provides an overview of the characterization of S. pseudintermedius strains from clinical pet samples and the prevalence of MRSP strains. A total of 123 S. pseudintermedius strains were characterized by phenotypic testing and the MALDI-TOF technique and evaluated for susceptibility to methicillin and the presence of the mecA gene. Of these, 49 (39.8%) were identified as MRSP. The results confirm the importance of monitoring resistant pathogens and the need for further studies to determine the prevalence of MRSP in companion animals.

https://doi.org/10.29374/2527-2179.bjvm107420
PDF

References

Bannoehr, J., & Guardabassi, L. (2012). Staphylococcus pseudintermedius in the dog: taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Veterinary dermatology, 23(4), 253-e52. http://dx.doi.org/10.1111/j.1365-3164.2012.01046.x. PMid:22515504.

Pa, W. (2006). Clinical and Laboratory Standard Institute C. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A7. Clinical and Laboratory Standard Institute.

C. L. S. I. (2018). A5: Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard.

Courvalin, P. (2016). Why is antibiotic resistance a deadly emerging disease?. Clinical Microbiology and Infection, 22(5), 405-407.. PMid:26806259.

Decristophoris, P., Fasola, A., Benagli, C., Tonolla, M., & Petrini, O. (2011). Identification of Staphylococcus intermedius Group by MALDI-TOF MS. Systematic and applied microbiology, 34(1), 45–51. https://doi.org/10.1016/j.syapm.2010.11.004 PMid:21300509.

Devriese, L. A., Hermans, K., Baele, M., & Haesebrouck, F. (2009). Staphylococcus pseudintermedius versus Staphylococcus intermedius. Veterinary microbiology, 1(133), 206-207. PMid:18760884.

Devriese, L. A., Vancanneyt, M., Baele, M., Vaneechoutte, M., De Graef, E., Snauwaert, C., ... & Haesebrouck, F. (2005). Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals. International journal of systematic and evolutionary microbiology, 55(4), 1569-1573. PMid:16014483.

Guardabassi, L., Damborg, P., Stamm, I., Kopp, P. A., Broens, E. M., Toutain, P. L., & ESCMID Study Group for Veterinary Microbiology. (2017). Diagnostic microbiology in veterinary dermatology: present and future. Advances in Veterinary Dermatology, 8, 163-172.. PMid:28133869.

Holmes, A. H., Moore, L. S., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J.(2016). Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, 387(10014), 176-187.PMid:26603922.

Koneman, E. W., & Allen, S. (2008). Koneman. Diagnostico Microbiologico/Microbiological diagnosis: Texto Y Atlas En Color/Text and Color Atlas. Ed. médica panamericana.

Markey, B., Leonard, F., Archambault, M., Cullinane, A., & Maguire, D. (2013). Clinical veterinary microbiology e-book. Elsevier Health Sciences.

Melo, D. A. D., Coelho, I. D. S., Motta, C. C. D., Rojas, A. C. C. M., Dubenczuk, F. C., Coelho, S. D. M. D. O., & Souza, M. M. S. D. (2014). Impairments of mecA gene detection in bovine Staphylococcus spp. Brazilian Journal of Microbiology, 45(3), 1075-1082. PMid:25477945.

Morris, D. O., Rook, K. A., Shofer, F. S ., & Rankin, S. C. (2006). Screening of Staphylococcus aureus, Staphylococcus intermedius and Staphylococcus schleiferi isolates obtained from small companion animals for antimicrobial resistance: a retrospective review of 749 isolates (2003–04). Veterinary Dermatology, 17(5), 332-337. PMid:16961819.

Motta, C. C., Rojas, A. C. C. M., Dubenczuk, F. C ., Botelho, L. A. B., Moreira, B. M., Coelho, S. M. O., Coelho, I. S., & Souza, M. M. S. (2014). Verification of molecular characterization of coagulase-positive Staphylococcus from bovine mastitis with matrix-assisted laser desorption ionization, time-of-flight mass spectrometry (MALDI-TOF MS) mass spectrometry. African Journal of Microbiological Research, 8(48), 3861-3866.

Murakami, K., Minamide, W., Wada, K., Nakamura, E., Teraoka, H., & Watanabe, S. (1991). Identification of methicillin-resistant strains of staphylococci by Polymerase Chain Reaction. Journal of Clinical Microbiology, 29(10), 2240-2244. http://dx.doi.org/10.1128/JCM.29.10.2240-2244.1991. PMid:1939577.

Murugaiyan, J., Walther, B., Stamm, I., Abou‐Elnaga, Y., Brueggemann‐Schwarze, S., Vincze, S., ... & Roesler, U. (2014). Species differentiation within the Staphylococcus intermedius group using a refined MALDI‐TOF MS database. Clinical Microbiology and Infection, 20(10), 1007-1015.. PMid:24807701.

Pomba, C., Rantala, M., Greko, C., Baptiste, K. E., Catry, B., Van Duijkeren, E., Mateus, A., Moreno, M. A., Pyörälä, S., Ružauskas, M., Sanders, P., Teale, C., Threlfall, E. J., Kunsagi, Z., Torrenedo, J., Jukes, H., & Törneke, K.(2017). Public Health Risk of Antimicrobial Resistance Transfer from Companion Animals. The Journal of Antimicrobial Chemotherapy, 72(4), 957-968. PMid:27999066.

Santos, T. P., Damborg, P., Moodley, A., & Guardabassi, L. (2016). A systematic review on the global epidemiology of methicillin-resistant Staphylococcus pseudintermedius: inference of population structure from multilocus sequence typing data. Frontiers in Microbiology, 7, 1599. PMid:27803691.

Weese, J. S., & Van Duijkeren, E. (2010). Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Veterinary Microbiology, 140(3-4), 418-429. PMid:19246166.

Worthing, K. A., Schwendener, S., Perreten, V., Saputra, S., Coombs, G. W., Pang, S., Davies, M. R., Abraham, S., Trott, D. J., & Norris, J. M. (2018). Characterization of Staphylococcal Cassette Chromosome mec Elements from Methicillin-Resistant Staphylococcus pseudintermedius Infections in Australian Animals. mSphere, 3(6), e00491-18. https://doi.org/10.1128/mSphere.00491-18

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Theresse Holmstrom, Luria Adib David , Cássia Couto da Motta, Thomas Hebert dos Santos, Irene da Silva Coelho, Shana de Mattos de Oliveira Coelho, Dayanne Araújo de Melo, Miliane Moreira Soares de Souza